9 research outputs found

    Cooperative Multi-Bitrate Video Caching and Transcoding in Multicarrier NOMA-Assisted Heterogeneous Virtualized MEC Networks

    Get PDF
    Cooperative video caching and transcoding in mobile edge computing (MEC) networks is a new paradigm for future wireless networks, e.g., 5G and 5G beyond, to reduce scarce and expensive backhaul resource usage by prefetching video files within radio access networks (RANs). Integration of this technique with other advent technologies, such as wireless network virtualization and multicarrier non-orthogonal multiple access (MC-NOMA), provides more flexible video delivery opportunities, which leads to enhancements both for the network's revenue and for the end-users' service experience. In this regard, we propose a two-phase RAF for a parallel cooperative joint multi-bitrate video caching and transcoding in heterogeneous virtualized MEC networks. In the cache placement phase, we propose novel proactive delivery-aware cache placement strategies (DACPSs) by jointly allocating physical and radio resources based on network stochastic information to exploit flexible delivery opportunities. Then, for the delivery phase, we propose a delivery policy based on the user requests and network channel conditions. The optimization problems corresponding to both phases aim to maximize the total revenue of network slices, i.e., virtual networks. Both problems are non-convex and suffer from high-computational complexities. For each phase, we show how the problem can be solved efficiently. We also propose a low-complexity RAF in which the complexity of the delivery algorithm is significantly reduced. A Delivery-aware cache refreshment strategy (DACRS) in the delivery phase is also proposed to tackle the dynamically changes of network stochastic information. Extensive numerical assessments demonstrate a performance improvement of up to 30% for our proposed DACPSs and DACRS over traditional approaches.Comment: 53 pages, 24 figure

    Legitimate against Illegitimate IRSs on MISO Wiretap Channels

    Full text link
    The low-cost legitimate intelligent reflecting surfaces (IRSs) are applied to the wiretap channel in physical layer security to enhance the secrecy rate. In practice, the eavesdropper can also deploy an IRS, namely illegitimate IRS, to deteriorate the secrecy rate. This paper studies the interplay between a transmitter, a legitimate IRS, and an illegitimate IRS in a multiple-input single-output (MISO) wiretap channel. We formulate a max-min secrecy rate problem, where all the information is available at the transmitter and the receivers. We aim to design an efficient transmit beamforming and phase shifting strategy of the legitimate IRS, under the worst-case secrecy rate achieved based on optimizing the phase-shifting strategy of the illegitimate IRS. We propose three solution methods based on the gradient descent ascent (GDA), the alternate optimization (AO), and the mixed Nash equilibrium (NE) in zero-sum games in strategic form. Simulation results show that for the continuous phase-shifting strategies, AO usually does not guarantee convergence, although it may achieve better performance than GDA in some iterations. GDA usually converges to a stationary point. Discrete phase-shifting strategies improve the convergence behavior of AO and GDA, while there is a single mixed NE with the highest secrecy rate.Comment: 2 figure

    The influence of mesiodistal dimension of abutment preparation design on stress distribution in fiber-reinforced composite inlay fixed partial dentures: a finite element study

    Get PDF
    Introduction: Fiber-reinforced composites (FRCs) arecomprised of fiber and composite resin. Use of this materialin conservative dentistry for fabricating fixed partialdentures is growing. Although different studies have investigatedFRC inlay fixed partial dentures, the reportedresults have been controversial. Due to the limitations ofexperimental studies for assessment of masticatory forcesin the oral cavity, computer software was used in thepresent study to simulate oral environment. The aim ofthis study was to compare stress distribution in FRC inlaybridges with two abutment preparation designs with differentmesiodistal (MD) dimensions using a 3-dimensionalfinite element analysis.Method: ABAQUS software version 6.3-1 (HKS Inc.) wasused to create a 3D design. Two 3-unit inlay bridges weredesigned with two different abutment preparations inthe anterior teeth with different MD dimensions: dovetailpreparation with larger MD dimension and box preparationwith smaller MD dimension. Next, 50 N load was appliedwithin one second to the cingulum.Results: The maximum stress in the two bridges was concentratedat the connector areas between the abutmentsand the pontic. The difference in this respect was statisticallysignificant. The stress was approximately 10 timeshigher in the box preparation with smaller MD dimensionthan dovetail preparation.Conclusion: The stress distribution was more uniform indovetail preparation with greater mesiodistal dimensionthan in the smaller box design

    NOMA-based improper signaling for multicell MISO RIS-assisted broadcast channels

    Get PDF
    In this paper, we study the performance of reconfigurable intelligent surfaces (RISs) in a multicell broadcast channel (BC) that employs improper Gaussian signaling (IGS) jointly with non-orthogonal multiple access (NOMA) to optimize either the minimum-weighted rate or the energy efficiency (EE) of the network. We show that although the RIS can significantly improve the system performance, it cannot mitigate interference completely, so we have to employ other interference-management techniques to further improve performance. We show that the proposed NOMA-based IGS scheme can substantially outperform proper Gaussian signaling (PGS) and IGS schemes that treat interference as noise (TIN) in particular when the number of users per cell is larger than the number of base station (BS) antennas (referred to as overloaded networks). In other words, IGS and NOMA complement to each other as interference management techniques in multicell RIS-assisted BCs. Furthermore, we consider three different feasibility sets for the RIS components showing that even a RIS with a small number of elements provides considerable gains for all the feasibility sets.The associate editor coordinating the review of this manuscript and approving it for publication was Prof. Sangarapillai Lambotharan. The work of Ignacio Santamaria was supported by the Project ADELE funded by MCIN/ AEI /10.13039/501100011033, under Grant PID2019-104958RB-C43. The work of Eduard Jorswieck was supported by the Federal Ministry of Education and Research (BMBF, Germany) through the Program of Souverän. Digital. Vernetzt.” joint Project 6G-RIC, under Grants 16KISK020K and 16KISK031
    corecore